ç	9. P.	Code: 20	EE025	54										R	20	
F	Reg	g. No:					i North		ibal e	é te .	hanh	2502]			
	8	SIDDH	IART	HINS	TITU	TE O	F EN (AU	GINE TONC	ERIN MOU	G & ' JS)	TECH	INOL	OGY::	PUTT	TUR	
	В	S. Tech I	ear ll	Sem	ester	Regi ELEC	ilar & TRIC	Sup CAL T	pleme ECH	entar NOL	y Exa DGY	mina	itions O	ctob	er-20	22
					(Elect	ronics	and C	omm	unicati	on Er	nginee	ring)				
Т	ime	e: 3 hours												Max	. Marl	ks: 60
					(Ans	swer a	ll Five	Units	5 x 1	2 = 6	0 Mar	ks)				
								UNI	T-I							
1	a	Explain t	he wor	king p	orincip	le of I	DC Ge	enerato	or and	draw	neat s	ketche	es of it.		L1	6M
	b	A 8 pole	lap w	ound	armatu	re of	a DC	mach	ine ha	s 960	condu	uctors	, a flux o	of 40	L4	6M
		mwb per	pole a	nd spe	ed of	400 rp	m. Ca	lculat	e the e	,m.f g	genera	ted on	open cii	rcuit.		
		If the ab	ove ar	matur	e were	e wave	e conr	nected	at wł	nat sp	eed m	ust it	be drive	en to		
		generate	400V.													
2		Evaloin	liffara	at true	afa	monot		OI th agu	< ations						T 1	(NA
4	a h	Explain C	V cor	n type	t gene	rator	ors wi the re	in equ	ations	the a	rmatu	e chi	int and a	orios		OIVI 6M
	U	winding	are 0.0	17 ohn	ng 27	ohms	and 0	05 of	ms re	specti	velv	The lo	and curre	ent is	1.4	OIVI
		100 A at	220 V	Find	the in	duced	e m f	and a	rmatu	re cur	rent w	then th	he machi	ne is		
		connecte	d as i)	long s	hunt ii) shor	t shun	t.	mata	ie eur	rent w	nen u	ne maem	ne is		
		••••••) Shor	U DITUIT	UNI	F-11							
3	я	Explain t	he spe	ed cor	ntrol m	ethod	s for T)C shi	int Mc	otor					L1	6M
	b	A 250 V	. DC sl	hunt N	Aotor 1	nas an	mature	e resis	tance	of .25	ohm.	on lo	ad it take	es an	L4	6M
	10	armature	curren	t of 4	5 A an	d runs	s at 75	0 rpm	. If the	e flux	of Mo	otor re	educed by	y 5%	2.	UIII
		without c	hangir	ng the	load to	orque,	find t	he nev	v spee	d of tl	ne Mo	tor.		,		
								OI	2							
4	a	Explain s	swinbu	rne's t	test for	deter	minin	g the e	efficie	ncy of	f a D.0	C Mot	or.		L1	6M
	b	Explain	the pri	nciple	ofope	eratior	n of D	C Mot	or.						L1	6M
								UNIT	'-III							
5	a	Explain	the w	orking	g princ	ciple of	of sin	gle pl	nase 7	Fransf	former	and	derive	e.m.f	L1	6M
		equation.														
	b	A 25 K	VA Tı	ransfo	rmer l	nas 50	00 tur	ns on	the	Prima	ry an	d 50	turns or	1 the	L4	6M
		secondar	y wind	ling. T	The pr	imary	is cor	nnecte	d to 3	000V	, 50 H	Iz sup	pply. Fin	d the		
		full load	prima	ry and	secor	ndary	curren	its, the	e seco	ndary	e.m.f	and t	the maxi	mum		
		flux in th	le core.	Negl	ect lea	kage c	irops a	and no	load	prima	ry cur	rent.				
6	0	Drow the	nhogo	n dia		fori	n ~1 ~ m	OI hogo t	K		for la	aaina	marrian f	e atan	1.2	(M
0	a	load	e phase	or diag	grann C	or a sn	ngie p	nase t	ransic	rmer	for la	gging	power 1	actor	LS	OIVI
	h	A 5 KVA	500/	250 V	50 H	7 1 m T	ranef	rmer	oave t	he fol	lowin	o read	lings		I.4	6M
	U	O.C. test	L.V si	de): 24	50 V 1	A 50	W	STITU	Buill	10 101		5 reat	<u>5</u> 3.		1.14	UIVI
		S.C test	H.V sid	de): 14	5 V. 6	A. 21	6 W.									
		Determin	ne the e	efficier	ncv fo	r full l	oad ar	nd half	full l	oad at	a p.f	of 0.8	lagging.			
			1.00		J _ J						I		388			

Q.P. Code: 20EE0254

1

L1

6M

UNIT-IV

- a Explain the construction details of 3 φ Induction Motor. 7
 - **b** A three phase, 50 Hz Induction Motor has a full load speed of 710 R.p.m. (assume L3 **6M** Ns.).For this Motor calculate,
 - (i) Number of poles
 - (ii) Full load slip
 - (iii) Rotor current frequency.

OR

- a Derive the expression for the running torque of an Induction Motor. **L2** 8 **6M**
 - **b** A 3 ϕ , 6 pole, 50 Hz Induction Motor has a slip of 1% at no load, and 3 % at full L3 **6M** load. Determine (i) Synchronous speed (ii) no load speed (iii) full load speed (iv) frequency of rotor current at standstill (v) frequency of rotor current at full load.

UNIT-V

9	a	Explain the construction of an Alternator.	L1	6M			
	b	Derive the e.m.f equation of an Alternator.					
		OR					
10	a	Explain the operation of Synchronous Motor.	L1	6M			
	b	A 200 KVA, 415 V, 50 Hz, 3\u03c6 Alternator has effective armature resistance of	L4	6M			

0.01 Ω and an armature leakage reactance of 0.05 Ω . compute the voltage induced in the armature winding when the Alternator is delivering rated current at a load p,f, of (a) 0.8 lag (b) 0.8 lead.

*** END ***